Wednesday 27 December 2017

Filtro de média móvel de 2ª ordem


Eu preciso projetar um filtro de média móvel que tem uma freqüência de corte de 7,8 Hz. Eu usei filtros de média móvel antes, mas até onde eu estou ciente, o único parâmetro que pode ser alimentado é o número de pontos a serem calculados. Como isso pode se relacionar com uma freqüência de corte O inverso de 7,8 Hz é de 130 ms, e Im trabalhando com dados que são amostrados a 1000 Hz. Isso implica que eu deveria estar usando um tamanho de janela de filtro média móvel de 130 amostras, ou há algo mais que estou faltando aqui pediu Jul 18 13 at 9:52 O filtro de média móvel é o filtro usado no domínio do tempo para remover O ruído adicionado e também para o propósito de suavização, mas se você usar o mesmo filtro de média móvel no domínio da freqüência para a separação de freqüência, o desempenho será pior. Então, nesse caso, use filtros de domínio de freqüência O filtro de média móvel (por vezes conhecido coloquialmente como um filtro de caixa) tem uma resposta de impulso retangular: Ou, declarado de forma diferente: Lembrando que uma resposta em freqüência de sistemas de tempo discreto É igual à transformada de Fourier de tempo discreto da sua resposta de impulso, podemos calculá-la da seguinte forma: O que mais interessou para o seu caso é a resposta de magnitude do filtro, H (ômega). Usando algumas manipulações simples, podemos obter isso em uma forma mais fácil de compreender: Isso pode não parecer mais fácil de entender. No entanto, devido à identidade Eulers. Lembre-se que: Portanto, podemos escrever o acima como: Como eu disse antes, o que você está realmente preocupado com a magnitude da resposta de freqüência. Assim, podemos tomar a magnitude do acima para simplificá-lo ainda mais: Nota: Nós somos capazes de soltar os termos exponenciais, porque eles não afetam a magnitude do resultado e 1 para todos os valores de ômega. Como xy xy para quaisquer dois números finitos x e y, podemos concluir que a presença dos termos exponenciais não afeta a resposta da magnitude global (em vez disso, eles afetam a resposta da fase do sistema). A função resultante dentro dos parênteses de magnitude é uma forma de um kernel de Dirichlet. É chamado às vezes uma função periódica de sinc, porque se assemelha à função do sinc um tanto na aparência, mas é periódica preferivelmente. De qualquer forma, uma vez que a definição de freqüência de corte é um pouco underspecified (-3 dB ponto -6 dB ponto primeiro sidelobe nulo), você pode usar a equação acima para resolver o que você precisa. Especificamente, você pode fazer o seguinte: Definir H (omega) para o valor correspondente à resposta do filtro que você deseja na freqüência de corte. Defina ômega igual à freqüência de corte. Para mapear uma freqüência de tempo contínuo para o domínio de tempo discreto, lembre-se que omega 2pi frac, onde fs é sua taxa de amostragem. Encontre o valor de N que lhe dá o melhor acordo entre os lados esquerdo e direito da equação. Isso deve ser o comprimento de sua média móvel. Se N é o comprimento da média móvel, então uma frequência de corte aproximada F (válida para N gt 2) na frequência normalizada Fffs é: O inverso disso é Esta fórmula é assintoticamente correta para N grande e tem cerca de 2 erro Para N2, e menos de 0,5 para N4. P. S. Depois de dois anos, aqui finalmente qual foi a abordagem seguida. O resultado foi baseado na aproximação do espectro de amplitude da MA em torno de f0 como uma parábola (série de 2ª ordem) de acordo com MA (Omega) aproximadamente 1 (frac-fra) Omega2 que pode ser feita mais exata perto do cruzamento zero de MA (Omega) Frac por multiplicação de Omega por um coeficiente de obtenção de MA (Omega) aprox. 10.907523 (frac - frac) Omega2 A solução de MA (Omega) - frac 0 dá os resultados acima, onde 2pi F Omega. Tudo o que acima se refere à freqüência de corte -3dB, o sujeito deste post. Às vezes, porém, é interessante obter um perfil de atenuação em banda de parada que é comparável ao de um filtro passa-baixo IIR de primeira ordem (LPF de um pólo) com uma determinada freqüência de corte -3dB (tal LPF é também chamado integrador com vazamento, Tendo um pólo não exatamente em DC, mas próximo a ele). De facto, tanto a MA como a Ia ordem IIR LPF têm uma inclinação de 20dBdecade na banda de paragem (é necessário um N maior do que o utilizado na figura, N32, para ver isto), mas enquanto MA tem nulos espectricos em FkN e um 1f evelope, o filtro IIR só tem um perfil 1f. Se se deseja obter um filtro MA com capacidades semelhantes de filtragem de ruído como este filtro IIR, e corresponder às frequências de corte 3dB para ser o mesmo, ao comparar os dois espectros, ele perceberá que a ondulação da banda de parada do filtro MA acaba 3dB abaixo do filtro IIR. Para obter a mesma ondulação de banda de parada (ou seja, a mesma atenuação de potência de ruído) como o filtro IIR as fórmulas podem ser modificadas da seguinte forma: Eu encontrei de volta o script Mathematica onde eu calculou o corte para vários filtros, incluindo o MA. O resultado foi baseado na aproximação do espectro MA em torno de f0 como uma parábola de acordo com MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) aproximadamente N16F2 (N-N3) pi2. E derivando o cruzamento com 1sqrt de lá. Ndash Massimo Jan 17 16 at 2: 08FIR Filter Noções básicas 1.1 O que são filtros quotFIR Os filtros FIR são um dos dois principais tipos de filtros digitais utilizados em aplicações DSP (Digital Signal Processing), sendo o outro tipo IIR. 1.2 O que quotFIR significa quotFIR significa quotFinite Impulse Responsequot. Se você colocar um impulso, isto é, uma única amostra de 1 quot seguida de muitas quot0quot amostras, os zeros sairão depois que a amostra de quot1quot tiver feito seu caminho através da linha de atraso do filtro. 1.3 Por que a resposta ao impulso é quotfinita? No caso comum, a resposta ao impulso é finita porque não há feedback no FIR. A falta de feedback garante que a resposta ao impulso será finita. Portanto, o termo resposta ao impulso quotfinito é quase sinônimo de "feedback". No entanto, se o feedback é empregado ainda a resposta ao impulso é finito, o filtro ainda é um FIR. Um exemplo é o filtro de média móvel, no qual a N-ésima amostra anterior é subtraída (retrocedida) cada vez que uma nova amostra entra. Este filtro tem uma resposta de impulso finito mesmo que utilize feedback: após N amostras de um impulso, a saída Será sempre zero. 1.4 Como faço para pronunciar quotFIRquot Algumas pessoas dizem que as letras F-I-R outras pessoas pronunciam como se fosse um tipo de árvore. Nós preferimos a árvore. (A diferença é se você fala sobre um filtro F-I-R ou um filtro FIR.) 1.5 Qual é a alternativa aos filtros FIR Os filtros DSP também podem ser QuotInfinite Impulse Response (IIR). (Veja dspGurus IIR FAQ.) Os filtros IIR usam feedback, então quando você insere um impulso, a saída, teoricamente, toca indefinidamente. 1.6 Como os filtros FIR se comparam aos filtros IIR Cada um tem vantagens e desvantagens. Em geral, porém, as vantagens dos filtros FIR ultrapassam as desvantagens, por isso são usadas muito mais do que IIRs. 1.6.1 Quais são as vantagens dos filtros FIR (em comparação com os filtros IIR) Em comparação com os filtros IIR, os filtros FIR oferecem as seguintes vantagens: Podem ser facilmente concebidos para serem fase quotlinear (e normalmente são). Posto simplesmente, os filtros da fase linear atrasam o sinal de entrada mas donrsquot distorcem sua fase. Eles são simples de implementar. Na maioria dos microprocessadores DSP, o cálculo FIR pode ser feito através de uma única instrução. Eles são adequados para aplicações multi-taxa. Por multi-taxa, quer dizer quotdecimationquot (redução da taxa de amostragem), quotinterpolationquot (aumento da taxa de amostragem), ou ambos. Seja decimando ou interpolando, o uso de filtros FIR permite que alguns dos cálculos sejam omitidos, proporcionando assim uma importante eficiência computacional. Em contraste, se forem usados ​​filtros IIR, cada saída deve ser calculada individualmente, mesmo que a saída seja descartada (assim o feedback será incorporado no filtro). Eles têm propriedades numéricas desejáveis. Na prática, todos os filtros DSP devem ser implementados usando aritmética de precisão finita, ou seja, um número limitado de bits. O uso de aritmética de precisão finita em filtros IIR pode causar problemas significativos devido ao uso de feedback, mas os filtros FIR sem retorno podem ser implementados usando menos bits eo designer tem menos problemas práticos a resolver relacionados à aritmética não ideal. Eles podem ser implementados usando aritmética fracionária. Ao contrário dos filtros IIR, é sempre possível implementar um filtro FIR usando coeficientes com magnitude inferior a 1,0. (O ganho global do filtro FIR pode ser ajustado na sua saída, se desejado.) Esta é uma consideração importante ao usar DSP de ponto fixo, porque torna a implementação muito mais simples. 1.6.2 Quais são as desvantagens dos filtros FIR (em comparação com os filtros IIR) Em comparação com os filtros IIR, os filtros FIR têm, por vezes, a desvantagem de exigirem mais memória e / ou cálculo para obter uma determinada característica de resposta do filtro. Além disso, certas respostas não são práticas para implementar com filtros FIR. 1.7 Quais termos são usados ​​na descrição de filtros FIR Resposta de Impulso - A resposta de resposta de um filtro FIR é apenas o conjunto de coeficientes FIR. (Se você colocar um quotimplusequot em um filtro FIR que consiste em uma amostra quot1quot seguida por muitas quot0quot amostras, a saída do filtro será o conjunto de coeficientes, como a amostra 1 passa passado cada coeficiente, por sua vez, para formar a saída.) Tap - Um quottapquot FIR é simplesmente um par de coeficientes de delay. O número de torneiras FIR (frequentemente designado como quotNquot) é uma indicação de 1) a quantidade de memória necessária para implementar o filtro, 2) o número de cálculos necessários, e 3) a quantidade de quotfilteringquot o filtro pode fazer com efeito, Multiplicar-acumular (MAC) - Em um contexto de FIR, uma quotMACquot é a operação de multiplicar um coeficiente pela amostra de dados atrasada correspondente e acumular o resultado. As FIRs geralmente requerem um MAC por toque. A maioria dos microprocessadores DSP implementa a operação MAC em um único ciclo de instrução. Banda de Transição - A faixa de freqüências entre as bordas passband e stopband. Quanto mais estreita for a banda de transição, mais torneiras serão necessárias para implementar o filtro. (Uma banda de transição quotsmallquot resulta em um filtro quotsharpquot.) Delay Line - O conjunto de elementos de memória que implementam os elementos de retardo quotZ-1quot do cálculo FIR. Buffer circular - Um tampão especial que é quotcircular porque incrementar na extremidade faz com que ele envolva ao redor para o início, ou porque decrementing desde o início faz com que ele envolva ao redor para o fim. Os buffers circulares são frequentemente fornecidos por microprocessadores DSP para implementar a quotmoformação das amostras através da linha de retardo FIR sem ter de mover literalmente os dados na memória. Quando uma nova amostra é adicionada ao buffer, ela substitui automaticamente a mais antiga. Movendo modelos de suavização média e exponencial Como um primeiro passo para ir além dos modelos de média, modelos de tendência linear, padrões não tendenciais e tendências podem ser extrapolados usando Um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é estacionária localmente com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, usá-lo como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio eo modelo randômico-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é chamada frequentemente uma versão quotsmoothedquot da série original porque a média de curto prazo tem o efeito de alisar para fora os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série de tempo Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar aquém do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Dessa forma, dizemos que a média de idade dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: é a quantidade de tempo que as previsões tendem a ficar atrás de pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais baixos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar encaixá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo escolhe grande parte do quotnoisequot na Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se preferirmos tentar uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: a média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é 3 ((51) 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões a partir do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não há uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e então construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obteremos previsões ainda mais suaves e mais de um efeito retardado: A idade média é agora de 5 períodos ((91) 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por pontos de viragem por cerca de 10 períodos. A quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações de forma igual e ignora completamente todas as observações anteriores. (Voltar ao início da página.) Browns Simple Exponential Smoothing (média ponderada exponencialmente ponderada) Intuitivamente, os dados passados ​​devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso do que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em um Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1 945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma determinada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Uma outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser otimizado com facilidade Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3.4 períodos, que é semelhante ao de uma média móvel simples de 6-termo. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA e no modelo randômico sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoável, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto quotmore previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Assim a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa adequada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode basear-se em outra informação independente sobre as perspectivas de crescimento a longo prazo . (Voltar ao início da página.) Browns Linear (ie duplo) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos), e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaque claramente contra o ruído, e se houver uma necessidade de prever mais do que um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo linear de suavização exponencial (LES) que calcula as estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos do tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em várias formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida aplicando-se a suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dado por: Isto resulta em e 1 0 (isto é, enganar um pouco, e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula as estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não podem variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de suavização de tendência 946 é análoga à da constante de suavização de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é utilizada na estimativa do nível local da série, a idade média dos dados que são utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a . Neste caso, isto é 10.006 125. Isto não é um número muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100, portanto Este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis ​​para um modelo que é suposto ser estimar uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de alisamento constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados ​​na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo a média da tendência ao longo dos últimos 20 períodos. Here8217s o que o lote de previsão parece se definimos 946 0,1, mantendo 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Suavização exponencial simples com alfa 0,5 (D) Suavização exponencial simples com alfa 0,3 (E) Suavização exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, portanto, realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa de tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se queremos ser agnósticos quanto à existência de uma tendência local, então um dos modelos do SES pode ser mais fácil de explicar e também dar mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar de sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos à frente que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 fica maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao topo da página.)

No comments:

Post a Comment